
Horizontal or Vertical? Beyond the Relational Database

Relational databases are the industry standard, even though specialist skills are required for
designing them; whatever the expertise of the database designer, the result is always a
compromise as the process of normalisation produces artificial constructs that cannot model
the complexity of the multi-dimensional real world.

Typically, the data for any particular file or entity type are stored in a single fixed length
contiguous record, with each type of data stored in a separate file. We might describe this type
of record layout as “horizontal”.

Consider a simple Customer File example with the fields Customer Number, Customer Name,
Address, Telephone Number, and Credit Limit.

Problems arise if any customer has more than one address or more than one telephone
number or if, after the file has been created and put into production, an additional field, such
as customer type, is required. Intellectually these are simple problems, but the changes are
difficult to implement, and, having allowed for, say, two telephone numbers, you will inevitably
come across a customer with three telephone numbers. Most customers may have one
telephone number but, if you allow for three, then, in a large customer file, space is wasted in
most records as the empty fields must be present but have a “null” value. With disk storage
prices now so low, wasted space is no longer an issue, but the longer records do have an
adverse impact on performance, which is an issue in many applications.

However, the most obvious problem is changing the layout of a file when repeating or
additional fields are required.

An alternative solution is to put fields, or each attribute, in separate records, using a key field
value, such as Customer Number, to link them together. These might then have the layout

Customer Number, Customer Name
Customer Number, Address
Customer Number, Telephone Number
Customer Number, Credit Limit

We might describe this file layout as “vertical”.

This document outlines the evolution of this concept which resulted in the creation of ERROS
(Expert Realtime Relational Open System), a most powerful application creation system that
allows incremental development of very complex applications without a detailed upfront
specification, without any physical database design and mostly without programming. The
ERROS Connectionist Database handles variable length records without the need for null values
and is responsible for extremely rapid response times. ERROS is not a relational database and
is unlike any other database management system. The concepts of ERROS have been
successfully patented.

To ensure that the purpose of each attribute record listed above is clearly identified, an extra
field, attribute number, could be put between Customer Number and the attribute data. If this
were, say, five digits long, then 99999 different attributes could be defined for the file.

To allow repeating fields for, say, additional telephone numbers, a second extra field, attribute
iteration number, should be put between the attribute number and the attribute data. This
would be part of the key field. If this can store, for instance, a three digit number, then each
attribute could have 999 iterations – any customer could have 999 telephone numbers if
necessary, but no space is wasted where a customer only has one telephone number or even
none.

This allows much greater flexibility than the fixed length “horizontal” record described earlier.

Sample records might be

1

Fig. 1

If the records are indexed on the first three numeric fields, then adding new records, including
newly defined attributes, will be very straightforward and the records will be retrieved by the
database handler in the correct sequence.

Note that I have numbered the first attribute, the customer name, which is the identifying
attribute, as attribute 00000. The reason for this is explained later.

If a new attribute is added, such as customer type, then this can be allocated a new attribute
number and, as this is part of the key field, an extra record can be added without the need to
change any of the existing records. The result would be

Fig. 2

If the records for all attributes were the same length and put in the same file, the database
handler would be simple to construct and response times would be much faster. If the data for
one attribute cannot fit into one record, then more than one can be used.

The horizontal file layout does not allow history to be stored – if a customer's telephone
number is changed, the old number is lost as it is overwritten with the new one.

If, with the vertical layout, a single byte dormant marker field is added to every record, then,
to change a telephone number, the old telephone number record is marked as dormant, a new
record is added for the new number, and the history is retained. Equally, multiple telephone
numbers can be stored for any customers. The absence of a record indicates that there is no
data, but, unlike null values, this takes no space. Records can be added at any time.

Fig. 3

The first field in the key field in this example, is the customer number. We may know the
customer's name, yet we probably won't remember the customer's number. We need a way of
looking it up by typing in the customer name without searching the whole file. Name is a valid

2

record identifier as are, for instance, date or date and time, or telephone number or postcode
or address, order number, etc. ERROS also handles synonyms.

Name could be part of the key field to allow searching by name, but, if the name was, say, 64
characters long, then this index field would need to be 64 characters long and this is too large
as part of the key field. However, by using a two stage, patented algorithm, this can be
reduced to a perfectly acceptable 4 bytes. This would allow 999,999,999 customer records.
The algorithm enables ERROS to map all records to locations on disk without the developer
knowing where or in which file these are stored. It also allows records to be accessed in name
sequence, and, for personal names, in the sequence of last name, first name(s).

We could use a similar structure for all our files. Once a database handler has been created
that can handle the new structure, then the ability to allow multiple attribute iterations could
be applied to all attributes in all files with no new database handler programming being
required. The records could all be accessed by name.

Until the customer number has been established, it will be zero. If we add an additional
compressed name identifier field as field 3, and include this as part of the index or key field,
then the record layout might be -

Fig. 4

Attributes can have one or more fields. They can also store unlimited text.

Note that, as the record identifier is now part of the key field, the second telephone number
now has a unique identifier so its Record Id. Suffix is now 001. In addition, all telephone
numbers for any customer are stored in number sequence within customer. If the names of the
employees of the XYZ Company were included, they would be stored in the sequence of last
name, first name(s) within the attribute “employees” and, as they would all be indexed, any
employee name can be retrieved instantly.

Thus, if a user types in XYZ Company, as it is the identifying attribute, the algorithm will set
the record and attribute numbers to zero and calculate the compressed identifier. As the
records are indexed, the database handler will find the record immediately without having to
search the database. If there are records with duplicate names, the database handler will
retrieve them. If the user only types XYZ (or xyz), the database handler will retrieve all
records whose names began with XYZ, such as XYZ Company, XYZ Group, XYZ Holdings, etc.
Having accessed the record for the XYZ Company, their customer number is retrieved from the
second data field. All attribute records for the XYZ Company can now be accessed as these are
stored with the customer number as the first part of the key field and the database handler will
read them all and pass them to the presentation layer for display. This could present them as
one contiguous record so that users would not necessarily be aware that the data is stored in a
different way from a horizontally organised database.

The database handler must also include a mechanism that allocates the next available number
for new customers if none has been entered by the user.

As new customer identifier records are added, they will be stored in name sequence so that a
list of customers is easily displayed. All attribute values for each customer are stored together
so that performance is excellent. ERROS is highly scalable.

3

Users are not aware of the structure of the key field – they simply find the method of operation
entirely logical and easy to use. The figure below shows how the records are stored (the gaps
would not exist in the database).

Fig. 5

Note that there are no problems with variable amounts of data for different customers. There
do need to be mechanisms that ensure that some or all attributes are mandatory and to
maintain data integrity but these are not described here.

The name sequencing mechanism allows us to access customers by name instantly, without
database searching. But what if we do know the customer number and want to access a record
by customer number? If we add a record sequence field as field 3, and as part of the key field,
with, say, 0 for records in name sequence and 1 for records in number sequence, we can store
extra records in customer number sequence and display and retrieve the records in customer
number sequence or by individual customer number.

Fig. 6

4

The link field is used to ensure that the two records for each customer name are linked and
that one cannot exist without the other. It is not seen by users.

We can now access customer records in either name or number sequence without the need to
sort them.

We might not want to retrieve all attribute values for a customer – perhaps we only wish to
find their telephone number. As the file is indexed, having accessed the customer name, we
only then need to access the telephone number record(s). We could define in a program that
the telephone number is attribute 2. However there is a simple way of achieving this without
programming.

Having established the database mechanism, we can use it for accessing other record types in
other files or tables by name and/or number. We can create a table of attribute names, which,
as they are created, are automatically allocated attribute numbers. We can then see all
attributes in name sequence together with their numbers.

Fig. 7

We can give the attributes proper names, such as telephone number, rather than, say,
TELNUM. The same database handler mechanism would automatically allocate numbers to
each new attribute as it was added. Thus, in the earlier example, address would be 00001,
telephone number would be 00002, etc. A list of all attributes could be displayed in alphabetic
sequence of attribute name, together with the attribute number.

This table of attribute names has the same layout as the Customer file and shows that there is
very little difference between user data, such as customer details, and meta data, such as
attribute definitions. The attributes are now defined in the database rather than in program
code. As new attributes can be defined with ease, file maintenance is no longer a significant
problem. When new attributes are defined for a file, the existing data does not need to be
changed. From the point of view of an application developer, this table of attributes can be
considered as his user data. Only when it is used in a customer application does it become
meta data.

The database handler can be set up so that, when a customer record has been accessed, the
operator is presented with a list of attributes, stored in a file, from which he or she can choose
the one(s) required. The attribute number will be retrieved and the key field of the required
attribute data record is now known and the record can be retrieved. If there are many
attributes, the user can either page through the list or type in the full (e.g. telephone number)
or generic (tel*) name of the attribute required.

Alternatively, the database handler can be set up so that all or a subset of attributes are
retrieved. These can be displayed in a sequence selected by the application developer and they
can be displayed as a single contiguous record.

We need a mechanism that allows us to access individual attribute values for a customer so
that if an application only required access to, say, customer name and telephone number, then,

5

as the file is indexed, only those two records need to be accessed. The saving in processing
time and disk reads may not be so significant with the simple example above, but, in a real
world situation, there would be many more fields in a customer file, and this file structure and
access method considerably reduces response times.

Such lists of attributes or meta data could be stored in menus. To distinguish between user
data and meta data, such as menus, we can include an additional field, Record Type, as the
first field in the key.

The following table shows how, having accessed a customer name record, the database
handler will present him with a list of the attributes available from which he can select the
one(s) that he requires.

Fig. 8

Many entity types and attributes are already defined in the ERROS Business Model. Developers
can add additional attributes to existing entity types or they can create their own entity types,
and use attributes already defined within ERROS or add new ones using the terminology
chosen by their users.

Because the attributes can be accessed by name, a user viewing the customer table could type

xyz company/tel*/*

and the database would immediately display the telephone number of the XYZ Company. No
SQL is required.

Using the same mechanism, we can create tables in the database to define entity types,
applications, users, etc.

If a further field, entity type (i.e. file) number is put at the beginning of each record, and is
indexed as part of the key field, then the same basic database structure can be used for all
data and all data for all entity types might be stored in one single file. Only one database
handler is required and this can be used for both data and application definition and for
operating the applications created. Here is the same data with the Entity Type No.

6

Fig. 9

Although the whole database, both user data and meta data, could now be accommodated in
one single file, there are operational reasons for splitting it into just a few files (under 10).
These all have identical layouts and are all accessed and updated by the same database
handler. As the files are opened when the operator signs on, remain open until the operator
signs off, are not constantly being opened and closed, and no new database programs are
being called, performance is outstanding. ERROS provides high level security at the attribute
level.

The menu records containing attribute lists currently contain all attributes defined for an entity
type. If, when an operator signs on, he or she selects an application to which he is authorised,
the database handler will retrieve the application number. If this is used in the menu tables as
the Application or record number, then application dependent menus can be created as in the
following simple examples.

If the entity types are also defined in a table, then the records can be accessed by name or
number, as before. So a user could type

entity type/customer/xyz company/tel*/*

and the database would immediately retrieve the telephone number of the XYZ Company. The
ERROS Connectionist Database can be described as intelligent. Again, no SQL is required. To
create a new table, the application developer simply has to add its name to the table of entity
types. The database handler will allocate an entity type number.

Fig. 10

7

This shows how different versions of the same customer record can be displayed in different
applications.

Attribute definition records contain multiple fields and these determine how the data records
within each attribute are to be identified and accessed and then displayed by the presentation
layer. They also specify the security levels required by operators to add, change, delete and
many other functions for the attribute. The values in individual menu records for the same
attribute might be different, so that, for instance, in application 32 above, addresses might be
displayed on one line, immediately followed on the same line by the telephone number,
perhaps with a comma as a separator, whereas, in application 321, the address might be
displayed on several lines, with each telephone number on the lines below. Security levels
might be different – perhaps, in application 321, the user might have read only access and
cannot change addresses or telephone numbers unless he can operate application 32.

The data in each attribute can be processed and presented by an exit program. One exit
program may be suitable for a group of different attribute types. This might be a standard
ERROS exit program or a special user version. User versions of menus can also be created.
These two most powerful features allow extraordinary flexibility and enable the creation of user
specific versions of standard ERROS applications without the need to alter those. There can be
a mix of standard and user menus. Exit programs can also be used to read and write non-
ERROS data and pass these to and from ERROS and also carry out any non-ERROS functions.

This document outlines the basic principles for building a new type of database that can be
defined and created without physical database design, that allows incremental application
development without programming and that can “grow as you go”. The way in which ERROS
actually works is different in some respects from this theoretical outline. For instance, the
ERROS key field contains more sub-fields than shown in the figures above.

There are many further details that need to be considered to achieve a full understanding of
ERROS and its extraordinary power and flexibility. Because the ERROS Connectionist Database
is in fact a semantic network and access to each node is provided by an attribute definition, it
is possible to define in the database how the data records are to be processed at the attribute
level, and there can be multiple definitions for any attribute, depending on the application and
the route taken to the data. With traditional databases, where a single record contains
multiple fields, program coding or perhaps SQL will be necessary to manipulate the different
attribute values. As ERROS is a semantic network, all data is stored in its context and it is a
contextual database.

ERROS is able to store very complex multi-dimensional, many-to-many relationships.
Relationships can be created with individual records at the attribute level. Subject to their
security, users can navigate all relationships in either direction at the same very high speed,
without the joins of relational databases, which do not naturally store bi-directional or many-
to-many relationships. Modelling complex relationships and hierarchies using relational
databases is not easy yet with ERROS it is very straightforward. The relational features of
ERROS, which were used to construct ERROS itself, need to be considered separately.

With traditional relational databases, response times are very dependent on the design created
by the developer, whereas, with ERROS, they are consistently very rapid, whatever the
database function being performed and whatever the size of the database. Tests have
suggested that ERROS response times can be as little as one tenth of those achieved with a
traditionally created application using a relational database.

ERROS application development and the applications created are all object-oriented as
encapsulation, multiple inheritance and polymorphism are all built into the basic logic of
ERROS and included in every ERROS application by default. ERROS application developers do
not need any understanding of OO concepts.

Application development and maintenance is much more productive using ERROS than with
any other method, with gains of several hundred percent. In one test, it had taken three days
just to design a simple traditional application and a total of about two weeks to complete its

8

creation. The whole process took just three hours using ERROS. The design was not required.

The same database handler and main ERROS programs are used for both application creation
and for the operation of those applications. Only three main ERROS programs and one exit
program are required and these total just under 17Mb of compiled code, as a large part of the
ERROS functionality is defined in the ERROS database using relationships. In other words, as
already stated, ERROS was used to define itself.

Most of the time, no new files, programs or other objects are created during application
creation, as data, application, and security definitions are all stored in the integrated ERROS
database together with the user data. All changes to data and application definitions and to
user data are journalled and there is an audit trail detailing who changed every single piece of
meta and user data and when. All ERROS applications are automatically integrated, sharing
data as appropriate. An ERROS high availability option is easily implemented.

The sample data illustrated above are very simple, but ERROS can be used to build very
complex databases for most commercial purposes and for the humanities. It is very suitable
for the creation of a wide range of robust, secure, high performance, high availability
applications, including transaction processing. It is equally appropriate for the creation of
databases where the amount of data can vary dramatically from one record to another, such as
in the humanities where, in many records, only a small percentage of attributes may contain
data whilst in others there may be very many attribute iterations. This is true, for instance, for
recording history where data for one event, person, concept, etc., may come in small droplets
and then, suddenly, and without warning, in a flood. These features are only possible because
of the vertical nature of the database. ERROS applications turn raw data into a fully navigable
semantic knowledge base.

ERROS is totally unlike traditional database and application development tools. There are no
compiled ERROS applications - the concept of compiled applications has gone. ERROS creates
HTML and Javascript on the fly so that all applications, including data definition and application
creation, can be operated immediately over the internet using the ERROS Standard Operating
Interface. For printing, ERROS generates PCL/5 on the fly. Report layouts are defined in the
database. This functionality is included in the ERROS programs mentioned earlier.

An important feature of ERROS is that any entity can belong to multiple entity types and
inherit the attributes of the entity type under which it is being considered. ERROS has no need
for foreign keys or joins and can handle views, triggers and stored procedures.

ERROS is also a real-time business modelling tool and a prototyping tool. The prototypes
created are working systems, not simulations. The database and application definitions can be
extended dynamically. No longer do the user requirements and system specification have to be
defined in every particular before detailed database design can be begin. Not only is there no
need for physical database design in ERROS, there is no facility for this as the database layout
can be extended incrementally as new needs arise, without the need to change existing
database records.

Very large traditionally created applications may be too complex for any single person to be
able to comprehend fully. With ERROS, the database and applications are created in small
steps that can be readily understood. These are automatically integrated by ERROS and, if the
individual definitions are correct, then the whole should be error-free, particularly if, as will
often be the case, no new programs have been created and even though its complexity may
defy overall understanding.

22nd June 2017

Rob Dixon

rob.dixon@erros.co.uk

9

mailto:rob.dixon@erros.co.uk

